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Summary

'Miner's rule for the cumulative damage due to fatigue, a determi-
nistic formula which is well known in engineering practice, has been
examined earlier from a probabilistic point of view with Birnbaum in
f2]. Here the assumptions of that model are weakened. Previously
the basic assumptions were that crack growth was stochastic in nature
with incremental extensions having a distribution with increasing
failure rate, and that the cycle of load fluctuations was fixed and
then repeated under program. We now assume, instead of the distributions
of incremental crack extension having increasing fallure rate, only that
for a given load fluctuation, the expected residual damage increment
either in crack initiation or extension, given the damage exceeds a
preassigned amount is less than the damage increment which was expected
for that load fluctuation before it was imposed. We also weaken the
assumptions concerning the type of loading spectra which are admitted,
considering the case of random load fluctuations which are cyclic in

distribution.

Utilizing results from renewal theory we study the expected number
of cycles until failure under both programmed and random loading spectra
and exhibit conditions of dependence upon load history under which a
generalization of Miner's rule agrees with the mathematical expectation
of fatigue life. Under other conditions of dependence we obtain bounds
for the expectedr;umber of cycles to failure under both programmed and

random loading spectra.




1. Introduction

In an earlier publication [2], Birnbaum and Saunders gave a statisti-
cal interpretation of Miner's rule (a deterministic formula appearing
in [6]) which has been used historically under almost all conditions in
fatigue analysis., In that paper Miner's rule was shown, under certain
plausible assumptions, to be the mathematical expectation of a stochastic
varfable regarded as fatigue life, This stochastic variable was the
number of periods of cyclic oscillations necessary to force the fatigue
crack, of which the incremental extensions per cycle themselves were
regarded as random varfables of a given tvpe, to exceed a critical crack
length. This critical length was also subject to chance fluctuations due

to various causes.

In what follows we will consider only standardized specimens of a
material which are subjected to fluctuating stresses due to loading of a
periodic or stochastic nature. To be more specific, for a load (or leoud
function) we mean a continuous plecewise linear function on the positive
real axis, the value of which at any time gives the stress imposed by the
deflection of the material specimen. This loading function will be generically
denoted by X, with or without affixes. Thus a load function determines
such parameters as maximum stress, minimum stress and average stress

which are usually used to define each loading oscillation.

A detailed comparison has been made in [2] among several sets of

assumptions and their consequences for Miner's rule in its traditional

!
1
1



form. We quote here onlv the most frequently used deterministic form

of Miner's rule, namelv that fatigue life under a spectrum of loads can
be expressed as a harmonic mean of the lives under the repectition of
certain fixed loads which comprise the spectrum. This form is dependent
upon the assumption that the order of the load oscillations can be per-
nuted in any cycle with the same resulting fatigue damage. Thus it be-
comes necessary to count onlv the number of oscillations of each load of

a given kind.

If a given cvcle contains various number: of different oscillations,
p ; . |
say n, oscillations of the 1% load type among k distinct types, then

the number of such cycles which can be repeated until failure is

(1.1) N ———=

n{ A=
le?

where Ni is the number of oscillations to failure under repeated

application of the same ith load,

By this cumulative damage rule we determine the fraction of damage
accrued during one cycle and use its reciprocal to calculate the total
life. In practice Ni are determined from available data on the regres-

sion of stress versus number of cvcles to failure. The n, are calculated

from a tvpical spectrum of loads during the cycle. Then Miner's rule in
the form given in (1.1) is used to determine the life N in cycles to

failure.

The objection that has been made to Miner's rule is that under certain
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programmed loads within laboratory control, the rule can predict life
eithér conservatively or unconservatively depending {in part upon the
order in which the loads are applied. This is to sav that the average
life can be made significantly less or greater than that predicted by
(1.1) by selecting and repeating certain sequences of loads of in-
creasing or decreasing magnitudes. The cvidence for this type of

behavior is well known, see [7] and the reterences given there.

What we do subsequently in this paper is to derive a formula for
the expected life which retains the influence of load order. The basic
assumption made previously concerning the class of random variables
governing incremental damage is relaxed here. At the same time the
stochastic nature of the imposed loads is taken into account, Moro- |
over, our formula also reduces to the classical form of lliner's rule

(1.1) when the loads are deterministic and their order can be neglected.

2 A Probabilistic Model

As in [2], it is assumed that fatigue failure is due to the
initiation, growth and ultimate extension of a dominant crack. At k

each oscillation of the imposed stress, this crack is either being

formed by the piling up of atomic dislocations or being extended by
the rupture of molecular bonds. In any case the damage accumulates by
an amount which is a random functicn of the magnitude of the imposed
stress and the geometry of the specimen, as well as the inhomogeneity

of the material and the influence of environment. The incremental

damage at cach fluctuation is therefore a non-negative random variable




whose distribution may depend upon several unknown parameters, the
nature of which we do not specify at present. In what follows we
shall speak only of "crack extensfon" but it 1s to be kept in mind
that we refer not only to the crack growth phase in the usual sense

but the sub-microscopic phase of crack initiation as well.

Let 1 denote a [ ... .catorme through { load fluctuations.
That s oC denotes that portion of the load function \ which
extends from time zero when the 1o wd was relaxed and the stress zero

i
until the time when the it' fluctuation has occurred.

Our first assumption is:

1° The i*P incremental crack extension during the last fluctuation
of the loading history \1 is a non-negative random variable
zi(xi). depending only upon b The Zi(\i) for 42 1

are statisticallyv independent random variables,

This assumption implies the statistical independence of the crack
extensions in each fluctuation not only from each other but from the
total crack length as well. Of course we do not preclude functional
dependence between the successive distributions. In this manner the
dependence upon the order of the loads is retained. This assumption
appears to be sufficient in most cases., Certainly such dependence is
realistic in the initial stages of fatigue crack growth, and may be even
in situations such as those in which the stress is near the ultimate yield

stress of the mertal or the crack long relative to the specimen under test.




We now introduce the nomenclature: If X 1is a non-negative raundom
variable, its complementary distribution function or co-distribution R

is defined as unity minus its distribution or
R(t) = P{X » t] for t > 0.

In life studies the co-distribution is called either the reliability
or the survival distribution. We have chosen another name because such

terms would be meaningless in our application here.

We also make an assumption about the probabilistic behavior of
the incremental crack extension during a given load fluctuation,
considering that the crack extension is influenced by the loading

history of preceding fluctuations. Specifically we assume

2° The incremental growth random variable Z(}),
for any loading history -, has a co-distribution
R(*:2) which satisfies the inequality, for all
x 0
(2.1) R(x:1) [“ R(t:\)dt l»/‘( R(t+x:))dt.
"0 0
The inequality (2.1) is the definition of a class of distributions
described as ''new better than used in expectation" and denoted by the
acronymn NBULE. 1t can be interpreted as requiring the expected residual
growth of the crack per fluctuation, knowing the crack extension exceeds

X, 1is less than or equal the expected crack growth per fluctuation for

any X - 0, We can write this, for all x >~ 0, as,




(27 E[Z2()-x'2() ~ x] - EZ(¥)

which is cquivalent vith (2.1).

This concept of NBUE was first introduced by Barlow and Proschan
in reliability studies in |[1] and was named and discussed systematically

by Marshall and Proschan in [4].

We believe that tle NBUL assumption is realistic since we can
nov make one compelling argument which covers both the initiation and
crack extension phases of fatigue., We have only to interpret (2.2)
in words and note its reasonableness; if a given amount of damage is
known to have occurred as a result of a particular stress fluctuation
then any expected amount of damage remaining would be less than the
total amount of damage expected were that same fluctuation reimposed

under identical conditions,

In the previous study, reported in [2], an argument is made that
crack growth byv the successive rupture of molecular bonds should be a
random variable with increasing failure rate (IFR). As we now show,

it would then 1 ‘)rt'cw be NBUE,

We can see easily that IFR class contains the NDUE class if we
consider the intermediate classification "new better than used" (NBU)

random variables. In this case we must have for each load history °

(2.3) R(t: )R(x:') - R(t+x:V) for all t,x - 0.

By integrating both sides of (2.3) with respect to t we obtain

the NBUE condition of (2.1). The inequality (2.3) means that the random
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residual crack growth knowing the crack has already extended a length
x > 0 during a fluctuation is stochastically smaller than the random crack

growth from the beginning of the fluctuation. The relationship (2.3)

above can be rewritten as

R(x: )-R(t+x:})) S

(2.4) s > 1 = R(t:d).

The left-hand side of (2.4) being an increasing function of x > 0
for each t > 0 is equivalent with the general definition of IFR random

variables, namelyv, that -/n R(t:)) 1is convex for t = O.

Remark: It follows from 1° that the total crack length at the end
of the nth cycle. say Sn’ is a random variable which is the sum of
independent random variables. Each summand of Sn represents the crack

growth during the corresponding cycle.

We make another assumption which replaces the classical one, at
present considered to be erroneous, that the load oscillations may be
permuted in any cycle without altering the resulting fatigue damage,

see [7].

This assumption allows the resolution of a load history into an

equivalent one in terms of fatigue data.

3° There exists a finite set of loading oscillations, say

o= {AO....,wk}, such that for any admissible loading

history 1 there exists an equivalent mi ¢ ., written
\ mi’ for which in distribution
(2.5) ZQ\) = Z2(w,).

j




In particular °0 is the loading oscillation such that

Z(‘“O) = 0.

When (2.5) holds, the incremental stochastic crack growth
resulting from the last oscillation of the load history A is the
same in distribution as the incremental crack growth following the
single oscillation iy preceeded by any number of repetitions of
itself. Thus (. determines a partition of the set of admissible
loading histories into equivalence classes. Since .« is finite,
there exists a fixed number of previous oscillations beyond which
the "memory" of Z does not extend. Also note that if ST

i.e. both equivalent to the same element in 2, it does not follow

that the two histories are or the same length.

The determination of { 1is not a mathematical problem. Its deter-
mination can be regarded as the subject of much of the recent research on
the influence of load order on crack growth. In particular work given in

[3], [5] and [8] would be of that nature.

We now make an assumption concerning the critical crack length, the
occurrence of which defines failure. This critical length can, in practice,
mean anything from 'catastrophic rupture oczcurring" to "the crack becoming
of such a length as to be visually inspectable'. For this reason we take

W, the critical crack length, to be a random variable such that

4° The critical crack size W is statistically independent
of the crack length Sn at the end of the nth cycle for

each n=1,2,... .



0.

This means simply that knowing the length W at which the crack
will become critical, i.e. failure will take place, gives no information

about the stochastic behavior of crack growth and vice versa.

3. Programmed Loads

Let £ be a subset of the continuous real valued piecewise linear
functions on the real line each taking the value zero except for some
interval of the form (0O,m) where m is an integer. We call each element
A € £ a load spectrum whenever the salient points of A can occur only

at the integers 1,2,3,... and (primes denoting derivative)
sgn A'(x) = -sgn »'(x+l) for all non-integral x > O.

The least positive integer m such that A(x) =0 for x > m is
called the length of the spectrum. Each unit interval across which the
load function is not zero we call a load [luctuation. The length is
merely the number of load fluctuations. Two successive fluctuations,
on one of which the load is increasing, is an oseillation. We make
the arbitrary convention that the number of positive fluctuations is

the number of oscillations.

We give an example in figure 1 of two spectra each of two oscillations.

o 4 V e

Note that the load oscillations are taken here to be of the same

o
-

duration, i.e. the frequency is the same. In actual fact with most
imposed loads they may not be, but because of the lack of frequency effect

in fatigue cycling we shall conveniently make this assumption. This
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discussion and justification has been made before by Schijve [8].

In what follows we will require the definition of continuation
of load function. Consider Al,xz e £ with my the length of Al.

We define the binary operation Al*xz on £ by:
Al*xz(x) = kl(x) + Xz(x-ml)
if Al(ml-l) and Az(l) are of same sign and

Al*xz(x) = Al(x) + Az(x-m1+1)

if Al(ml-l) and Az(l) are of different sign.

We define a programmed 1oad as the repetition of a spectrum. It
is thus a cyclic continuous real valued piecewise linear function on

the real line of infinite length.

Let A e £ be given with length m > 0. Then )\ is the programmed

load with spectrum A whenever ) = xl*xz* -++ where A =) and

Aj+1(x) = Aalx=m) ‘for d = 1,220 .,
Thus A represents the jth cycle of the programmed spectrum. Let

1)

1 be the partial repetition up through the ith load fluctuation of

Al

st = i ;
the (j+1) cycle, that is Aj+1 is the restriction of Xj+l in domain

to the interval (jm,jm+i). Hence A;+1

(j+l)St cycle up through the ith load fluctuation for each i > 1.

is the load history of the

Following the same general approach used previously in [2] we wish
to establish bounds for the expected number of cyclic repetitions of
A ¢ £ which can be performed until failure, as determined by various

assumptions concerning the stochastic nature of fatigue. We would then
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like to compare these with the number given by Miner's Rule.

t
We make use of 1° to write the random crack extension under the j

cvclic repetition of the load spectrum A, of length m, as

3.1) Y. () =

i

2oty ye1,2,...
1 3

n[ -8

where different affixes 1 and j on the Zi's indicate independent

3

replications of the corresponding random variables.

Let NY(l) be the random number of such cycles until failure. It

is defined by

(3.2) [NY(\) =n]l =[5 ,CG) < W, 8 0)>W]
where
Q
(3.3) S (:) = > Y, (v) for n - 1.
n =1 i

We now statce a fundamental

Lemma 1: If Yl’Y”"' are independent and identically distributed

non-negative random variables with mean . and Sn =Y, +ece+ Yn is

1

independent of W for all n=1,2,... then the integer valued random

variable NY(W) defined by

(3.4) [NY(w) =n] = [sn W, S W)

=1 n —

alwayvs satisfies the left-hand inequality below

N A B
(3.5) L EN, (W) - kv
i - - 1

and if the Yi are NBUE it satisfies the right-hand inequality as well.
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Proof: 1If we let W = w with probability onc then the inequality
(3.5) is well known to h¢ true under the conditions stated, see [1].

From the independence of W and Sn’ (3.5) follows by conditional

expectation. A more complete exposition of this point was made in

[2].

By Assumption 1° the Z;(Ai) for all i =1,...,m, are independent
and by 2° are NBUE. Thus by a known result, see [4] or as can be easily
proved from the definition (2.2),the convolution of such random variables
is NBUE. Hence the Yj(A) for j > 1 are all random variables which
are NBUE. Moreover, they are independent and identically distributed.

Thus from Lemma 1 we have, setting

w=EW, v() = ENY(A) and EYj(A) = .())

the relation

(S O — v RS P

From (3.6) there follows

W
T <M T

If a spectrum X has m fluctuations then ki for i=1,...,m
denotes the m load histories, which may not all be distinct in their
effect upon crack growth., 1In fact, it is well accepted that the crack
does not grow when the load fluctuation is decreasing, see [5]. Addition-

ally, we make the notational convention that

(3.7)

ISR ST LRSS AN A o T
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We mav regard each mi e 2 for j=1,...,k as a spectrum consist-
ing of a single oscillation per cycle. In this case Zﬁnj) = Y(mj) and

we set

§=1, ...,k

(3.8) EY(W,) = u, vj = ENY(m )

J
This information is usually obtained from the regression plot of cycles

to failure versus points in (@, This is the so-called S-N diagram.

Then by applying the fundamental lemma to the spectrum mj we have

W w
(3.9) T = Uj il Jml .5k
j i
We now define the number of % in equivalent with mi. Let

i -1 denote the indicator function taking the value one if true and
zero otherwise. Then
(3.10) o= 3 = G asa Jlobh e 5 oG -0l
j i J = j j
j=0
By taking expectations of (3.1) and using (3.10) we see
k
(3.11) u(A) = > u.n, )

5 0

and substituting from (3.9) obtain

X n,) k n, (})
(3.12) v D> T»jT <u@) sw D> --11,—— ;
i=1 j' j=1 "J'

By rearranging we obtain bounds on w/u()) which when substituted

into (3.6) yield the following:
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Theorem 1: For Programmed Spectra. If the stochastic nature of

incremental crack growth satisfies Assumptions 1° and 2°, then each
cyclic repetition of a programmed spectrum A, results in random crack
extensions which are independent replications of Y(1). It follows the
number of times A can be repeated until the crack exceeds a given
stochastic limit, satisfying 4°, has finite expectation ENY(\)' By
Assumption 3° there exists a sufficiently inclusive set  of load

oscillations for which the information in (3.8) and (3.10) is provided

from an S-N diagram for each wj e

Bounds for the expectation are then given by

1 1
(3.13) —————————— _ 1 < EN € reemm———
k = N(A) ok A
SN W) =k nlil)
=1 S 1

Note that these are the same bounds given previouslv in [2] except
under weaker conditions on the stochastic nature of crack growth and the

broadening of the interpretation of nj(\).

4, Convex Spaces of Random Spectra

Having weakened the basic Assumptions 1° and 2° by replacing tie
IFR class of distributions by the NBUE class and given a broader inter-
pretation to the weighting factors nj(\) appearing in Miner's Rule, we
now wish to relax the assumption that the loads which are to be imposed
are cyclic in the deterministic sense used hithertofore. Consequently,
we make an assumption more in keeping with the stochastic nature of fatigue

cycles as they appear in practical situations. By this we mean the cycle
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only roughly repeats itself while the individual fluctuations of load do
not. We utilize subsequently the convention that random variables will
be denoted by upper case letters and the corresponding lower case letters

the observed values.

l.et us set

(4.1) Y= £: v >0 forall x - 0},

£ v Lﬁ' is not identicallv zero then it must have even length

m - 2 so without loss of generality assume the first fluctuation

is on (0,1), » 1is increasing thereon and moreover is then increas-
ing on the intervals (2j,2j+1) for j=0,...,% - 1 and decreasing

~ the intervals (2j-1,23) for j=1,...,% .

-

As a consequence of (4.1), ° can be characterized by the vector

(4-2) ('(1)9‘(2)”"9'““_1))
where

0 - (2j) - (29+1) - 1 (2§+2) j=0,...,%- 1.

.+
A typical element in [ is graphed below in figure 2.
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= ’ + 5
If we denote £ = {} c £: -x € £ }, then a space which represents
the ground-air-ground cycle in certain aeronautical fatigue studies is a

subset of
(4.3) £ *E+ :':ﬁ—.

A typical element of this space is given below in figure 3.

Note that the continuation is well defined for the stresses of the

cycle during take-off, flight and landing for a particular lower wing
station of the airframe. However, insofar as possible we shall leave

the exact nature of £ unspecified in order to obtain as much generality

as possible.

Let A denote a random function taking values in £ and Ai

denote the restriction of / in domain to the interval (0,i).

Again we call At the ith (random) history of the load and it
corresponds to ' oas previously defined. The length of the cycle,
call it M, may be a random integer. For i < M, At is well defined

A

and for i * M we follow the convention of (3.7) and set At = W, e



-17-

We define the random load A to be cyclie in distribution when-

ever
R XU
o8 .\l 4\2 .o
where ij for i =1, 2,... are independent and identically distributed
replications of some random load function .. on £ . Note in the case

M=m with probability one that we have equality in distribution for all

. 1 p!
j #k of ”j =k for each i = 1,,..m. This replaces the cyclic

assumption of Section 3.

During the jth cycle let 2;(Aj) be the random microscopic crack
extension due both to that portion of the jth random cycle up to the
ith fluctuation, namely L;, and the stochastic variation within the

material, i.e¢. its inhomogeneity.

We see the total damage in the sense of crack extension during the

jth cycle of load fluctuations, from our assumption, is

Y. (A, = N\ Zi 1 "
(4.4) ey = 34y

We now let
n
(4.5) NEVE BRI ACW
i=1
he the total crack length at the end of n cycles. Note that Sn(i),

bv assumption, is the sum of n independent and identically distributed

random variables.

What we would like to prove is that (3.5) holds for the random

variable NY(A)’ which is defined by the formula corresponding to (3.2)
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with Sn now defined by (4.5). However, we cannot proceed exactly
i .
as before because the assumption of Zj(k§) being NBUE is not sufficient

to imply that Zﬁ(ﬂ%) are in the same class. One may see this from the
J

conditional expectation
i 1 i
P[Z,(\,) - x] = ER(x:A])
[j(j) ] 3

by knowing mixtures of NBUE variables are not necessarily NBUE. See the
example in Appendix A. Moreover, the Zi(Ai) need not even be independent
since the Ai are not. Therefore, the hope that the NBUL property could
be invoked to use the right-hand inequality of (3.5) is vain. Con-

sequently, we must impose further assumptions on the basic model.

We now state the crucial assumption

RO

5° For any x » 0, a co-distribution R(x:*) 1is a convex

function over the convex sample space £ .

Clearly e* and £~ are convex spaces. They represent loading
functions in which the specimen is exclusively in either compression or
tension. However, spectra which contain fluctuations which are both
compressive and extensional may not, in general, form a convex space
unless other assumptions are made, Thus to assume that the spectra of
the ground-air-ground cycle is a convex space it would be necessary to
assume that each of the three portions would be of fixed length. Of

course, this might be suitable for some applications but not for others.

Before we proceed with determining the implications of this assump-

tion let us discuss its reasonableness. That £ is a convex space is
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merely a mathematical restriction on the type of admissible loading.

It is made only to facilitate our analysis. However, the second part

of the assumption, to wit , R(x:*) 1is a convex function, is a strong
inference about the nature of fatigue crack growth. Thus any conclusion

we draw must reflect any uncertainty that we have in this assumption.

Consider the vector representation of ) as given in (4.2)
It is clear that for any x > 0, R(x:1) should be convex increasing
as a function of each of the fluctuation peaks (maximum stress per
oscillation) A (21i+1), i=0,...,%‘- 1 and convex decreasing as a

function of the fluctuation troughs (minimum stress per oscillation)

A(231), j=1,...,%'— 1. See References [3] and [9] and Appendix B.

What we assume in the second part of 4° is the joint convexity

over all the variables A(i), i=1,...,m-1 restricted by
A(23) < A(2§+1) > A(2342), j=0,...,-;l- 1.

Thus our simply stated assumption of joint convexity is not too great

a conceptual step from the known convexity in each variable separately.

Because £ 1is assumed to be a convex space it follows, since A
is a random function taking values in £, that EA 1is a spectrum in
£. The other part of 5°, namely that R(x:*) 1is convex over £ 1is

equivalent with the stochastic inequality
(4.6) Y(A) > Y(EA).

To see this note by the theorem on conditional probabilities that

for all y >0
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(4.7 P{Y(A) > y] = ER(y:n) > R(y:En) = P[Y(ER) > y].

By adding independent identically distributed variates each pair
satisfying (4.6) we have from the definition in (4.7) the stochastic

inequality
>
Sn(A) Sn(EA)

By analogy with the fundamental lemma equation (3.4) we have

My gy 20l = 15, <
thus there follows the stochastic inequality

(4.8)

<

NY(A) NY(EA)‘

But note that Yj(EA) are NBUE by the assumption of Section 3.

Thus by taking expectations of (4.8) and the Equation (3.5) of the

fundamental lemma we have

EW

(4.9) BNyay £ TGN

For 1 >1, j=0,...,k set

CIR T |
P[A - uj] pj'

We consider the typical incremental crack growth per random cycle

vy = N zted
-1

then by properties of conditional expectation

_ i
] - Ujpj'

(4.10) eztahy = & i)t -
: 3

\ 3

Wt =

1




Thus we obtain the expression

k

we EY(D) = NN

Kk
N
b} S WP, ™ ) un

where

= = \ i- y Ai = = A
(4.11) nj 121 pj E ;%1 { uh} Enj( )

is the expected number of histories Ai in the cycle A equivalent
with uﬁ, to use the notation of (3.10). By multiplying (3.9) by

and summing we have

"

£
==
L .

Rewriting the above we obtain

1 W 1
k n. —v— k @ °
v e
- ) —
1 Yy e

By Letma 1 we know that for every sequence of independent identically

distributed random variables, in particular Yj(Aj)’ j=1,2,..., we have

A

s 1 < ENY(A)'

Thus we obtain

1t is known that for some MNBUE variables Y, we have ENY i_w/EY.

We must make use of the convexity as given by (4.6).




sabAS

——
iy -~

-22-

Combining the left-hand side of (3.12) with (4.9) we have

W
ENyA) STCED <k nL (D)

~=M
Cdn

This completes the result for random spectra. Note that if A 1is

deterministic this reduces to the same bounds which were given in (3.13).

Theorem 2: For Random Spectra on Convex Spaces. If the stochastic

nature of incremental crack growth satisfies assumptions 1°, 2° and 5°, and
each independent replication of a random spectra A with convex sample
space results in independent crack extensions Y(A), then the number of
replications of A that can be made until the crack exceeds a given

stochastic limit, satisfying 4°, has finite expectation EN which is
Y(A)

bounded by

(4.12) - El,, ™ " 1S BNypy 2% :(EA) :
o it e
=1 =17

where by Assumption 3° for each wy € % we know

(4.13) v, = EN

g " By, and a,0) = Sty .

3 151 ]

We can also obtain the

Corollary 2.1: Supressing assumption 5°, including the convexity
of the sample space of the random spectra A, we see that the number
of replications of A until the crack exceeds the stochastic limit
satisfying 4° has expectation bounded below by the left hand side of

».uation (4.12).

Lol o 2o g - 23 e e A "




5. Conditionally Convex Spaces of Random Spectra

Let us now consider the situation when the loading spectra may have
its length, or a portion, of random duration. This case cannot be treated
by the assumptions used hithertofore. For example, each portion of the
ground-air-ground cycle such as take-off, flight and landing may well be
of such significant variability that it should be considered of random
duration. In this situation the sample space of load spectra would not
be convex. Nevertheless, there is a set of conditions which 1f known
(for example, the gross take-off weight, barometric pressure, and the
length of time of flight) make all the random spectra with these given
boundary conditions have the same distribution on a convex subset of the

sample space.

Thus we postulate, there exists a random couple (/,%) having a
joint distribution on £ * P for which the conditional random function
%4, for each + . P, is a random spectrum taking values in a convex
subspace of £. The case we have in mind is A|4 being a random spectrum
of fixed length in each of its portions as was considered in the preceding

section.
What we wish to determine is bounds on

where Y(A,0) = Y 2t .

EN

Here again Zi(Ai,W) are the random incremental crack extensions

immediately following the ith fluctuation within the history.

By assumption Yj(Aj.ij), j=1,2,..., are independent and identically

distributed random variables with expectation u = EY(A,?}).
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Rearranging terms using the properties of conditional expectation,

and with an obvious modification of (4.10), we have

. k
c= B X CHD = Y wE Y ()
il j=1 i>1

We now have

k k
\‘ 5 > = Y *
o= o | E.E.n (A[¢) » u,nN

vhere we set, by analogy with (3.10) and (4.11)

LI ) AL - ooo,k
nj hnj(\. ) j 1!

Proceeding as before, from (3.9), we obtain

1 W 1
TR - - kW
Sl Y "
S~ v,+l
j=1 ] =1

By the fundamental lemma, for any non-negative random variable

1 w v
{{. i]‘j = 1 _<__ I 1 o ENY(A,‘I’).
3=1

Consider the set
Px = {y « P: ER(-:EA|+) > R(*:EA|¢)}

where an inequality between functions indicates the corresponding
inequality between functional values for all values of the domain,

If P* is not empty, it follows by Zorn's lemma, since linearly

ordered subsets of P*, ordered by the function R(-:E\l¢) for
¢ ¢ P*, have lower bounds, that there are minimal elements of P*.

We then pick ¢ as the maximum likelihood of the minimal elements

rated by the marginal density of 1.




~25=

Proceeding in the same manner as before, by using the properties
of conditional expectation and the convexity of the domain as well as
that of the co-distribution function, we have

ER(-:A,0) > ER(- :EA|®) > R(+:EA|$).

Ultimately we obtain

1 1
(5.1) - - 1< EN <
kK En,(h,0 S®:a,n 2 Tx EA
E ﬂ]( ) (A1) nl( 14)
j:l Vj j:l vj+1

Theorem 3: For Random Spectra on Conditionally Convex Spaces. If the

stochastic nature of incremental crack growth satisfies assumptions 1°,
2° and 3° and each independent replication of the random couple (A,1)
causes an independent crack extension Y(\,!) and the conditional
spectrum A|¢ has a convex sample space for each ¢ and the marginal
distribution is known, then the number of replications of (%,1) that
can be made until the crack exceeds a given stochastic limit, satisfying

4°, has finite expectation EN which is bounded by (5.1) above.

Y(A,4)




APPENDIX A

Take R(x:') = exp{-x/.(})} for x > 0. One checks easily
that the NBUE property is satisfied. However, let A take two

values, say Al and Az, each with equal probability. Then

ER(x:\) = %[exp(-x/ul) + exp(-x/uz)] .

To have this mixed distribution be NBUE is equivalent with

[ explZ) + expXL) ay
0 1 2

(i tu,) 2
exp (=x/i.;) + exp(-x/u,)

for all x - 0. Upon simplifying we obtain the inequality

: -xlua L o . -x/u
(b =x,) e = (nl iy) € 1

which is clearly impossible unless My = o

2.
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APPENDIX B

In order to see that current hypotheses concerning crack growth
rates are not in disagreement with this assumption we note that
R(x:-) being convex over £ for each x > 0 implies that
grR(x:-)dx is also convex over £ . This integral is the expected
crack extension. In [5] the "crack growth rate'" is given as pro-
portional to

f(x,y) = Xa(x-y)b for x >y >0

where x 1is the maximum load and y 1is the minimum load and both

are unscaled. We interpret these two concepts as being the same.

The question now is, does there exist a region of values of
a,b over which f 1is convex and if so, is the region in conformity

with those values obtained by experiment.

A well known condition both necessary and sufficient for the

convexity of twice differentiable functions is

9
-

£ 20, £ _ 20, f f =zf
XX'yy T xy

XX yy

with subscripts denoting partial differentiation. One checks that

2 2
a=-a , b’=b 2ab
fxx/f 2 i w2 s x(x-y)
X (x-y)
2
£/t b"-b .
Yy (x-y)

fxy/f = x(x-y)
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> 2 > >
Thus clearly a,b 2 1 implies fxx 24 0% fyy z 0.

I)
We now check that f f 2 f~  is equivalent with
XX Yy Xy

fxx/flazbz/[xz(bz-b)]. But note that xy\/f / yVa -a + xVb k

since 1 b+ a implies (a —a)(b -b) 2 2. Thus

y Vaz-.;. + x\/b?)'—:l—)— 2 yab/V bz-b

is a sufficient condition for convexity. However this last inequality

is equivalent with

9
Yy . b"=b
S ab- \/(bz-b)az-a

Now 1 = % > 0, hence the inequality above is true if the right hand

side is always negative, which is true if
b 1 /AL 1
€ amn o - -—— ——
1 s a a +va b)(1 a) '

But the square roct of a numeer less than one exceads the number,

Hence, a sufficieat condition for convexity is
- b 1 1 1 .
T (1-5)(1—2)  if an only if b 21 +va .

Thus if b =4, a9 and if b = 3, a £ 4. These values are
not in disagreement with observed values, Also note that in order to
obtain simplicity we have becn exceedingly wasteful with our inequality.
For example, from physical reasons x must be bounded and this restriction

has not been imposed.
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CONCLUDING REMARKS

In this paper we have made an attempt to find physically
realizable conditions under which both upper and lower bounds on
the expected number of cycles until failure can be found and expressed

by a formula which is a generalization of a variant of Miner's rule.

We should not lose sight of the fact that some of the mathematical
structure imposed was only necessary to obtain the upper bound and
thus insure that the expected number of cycles is given approximately
by one form of Miner's rule. Without making the restrictive assumption

5°, we have the lower bound (4.11) holding for arbitrary £.

Thus we conclude that a variation of Miner's rule gives a
conservative lower bound for the expected number of cvcles until

failure under very general conditions.
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